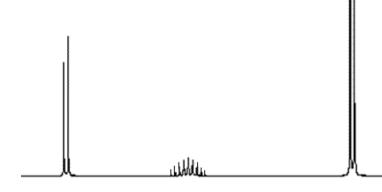

Analytical chemistry year 12

Name_____

- 1) Consider the image of the burette on the right.
 - a) What is the volume reading of the burette on the right?
 - b) What is the error of a burette reading?


c) Serotonin (C₁₀H₁₂N₂O; molar mass = 176 / mol) is a compound that conducts nerve impulses in the brain and muscles. A sample of spinal fluid from a volunteer in a study was found to contain a serotonin concentration of 1.7 ng/ L (1.7 nanograms per litre). How many molecules of serotonin are there in one millilitre of the spinal fluid?

d) Xylose is a compound that has five carbon atoms in each molecule and contains 40% carbon by mass. What is the molar mass of xylose?

- An organic compound has the following percentage composition by mass. 49.79%C, 7.47%H, 13.28%O, 29.46% Cl.
 - a) Find its molecular formula if 1.50 mol of the substance weighs 180.0 grams

2 marks

b) The NMR spectrum of the compound is shown on the right?Draw a possible structure for this Compound.

3) 0.4415 g of a pure acid, H₂X(s), is added to exactly 80.0 mL of 0.105 M NaOH(aq). A reaction occurs according to the equation H₂X(s) + 2NaOH(aq) → Na₂X(aq) + 2H₂O(I) The NaOH is in excess. This excess NaOH requires 25.21 mL of 0.197 M HCI(aq) for neutralisation. Calculate

i) the amount, in mol, of NaOH that is added to the acid H₂X initially

ii) the amount, in mol, of NaOH that reacts with the acid H_2X

iii) the molar mass, in g mol⁻¹, of the acid H₂X.

2+2+2=6 marks

4) The amount of iron in a newly developed, heat-resistant aluminium alloy is to be determined.

An 90.50 g sample of alloy is dissolved in concentrated hydrochloric acid and the iron atoms are converted to $Fe^{2+}(aq)$ ions.

This solution is accurately transferred to a 500.0 mL volumetric flask and made up to the mark.

25.00 mL aliquots of this solution are then titrated against a standard 0.0450 M potassium permanganate solution.

 $5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(I)$

Four titrations were carried out and the volumes of potassium permanganate solution used were recorded in the table below.

Titration number	1	2	3	4
Volume of KMnO ₄ (mL)	20.02	19.98	21.23	20.01

a) Write a balanced half-equation, including states, for the conversion of MnO_4^- ions, in an acidic solution, to Mn^{2+} ions

2 marks

b) Calculate the average volume, in mL, of the concordant titres of the potassium permanganate solution

1 mark

c) Use your answer to part b) to calculate the amount, in mol, of MnO_4^- (aq) ions used in this titration

1 mark

d) Calculate the amount, in mol, of Fe²⁺(aq) ions present in the 500.0 mL volumetric flask.

2 marks

e) Calculate the percentage, by mass, of iron in the 90.50 g sample of alloy. Express your answer to the correct number of significant figures.

5) When substance "X" with empirical formula CH_2O is dissolved in water it reacts to form a mixture with substance "Y" with empirical formula CH_3O according to the equation below

 $X(aq) + H_2O(I) => Y(aq)$

The concentration of "X" can be determined using UV-visible spectroscopy. "X" absorbs strongly at 290 nm while "Y" shows no absorption at this wavelength.

In a particular experimental arrangement at 25°C, the relationship between absorbance at 290 nm and concentration of "X" is given by the relationship Absorbance = $7.15 \times ["X"]$

In the experiment, 0.0550 mol of "X" is dissolved rapidly in 0.500 L of water at 25°C. The absorbance of the solution changes as some of the "X" is converted to "Y". The table below shows the change in absorbance over time

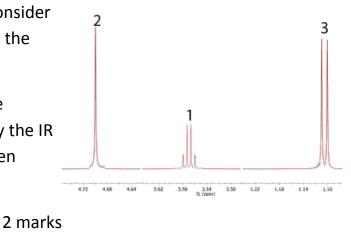
Absorbance	0.530	0.430	0.320	0.285	0.280	0.280
Time (s)	6.00	60.0	90.0	120	240	480

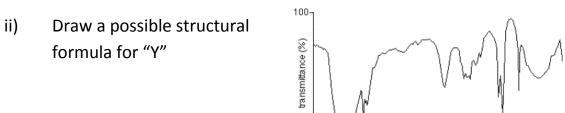
a) Calculate the concentration of "X", in M, when the reaction was complete.

2 marks

b) Calculate the absorbance at the instant that "X" was dissolved in the water, before any reaction occurred.

2 marks


c) Calculate the percentage of the original 0.0550 mol of "X" that has been converted into "Y" at the end of the reaction


2 marks

d) The average rate of a reaction can be determined by calculating the change in concentration of a reactant per second. Calculate the average rate, in M/s, at which the concentration of X changed during the first 6.00 s of the reaction.

2 marks

- e) The formula mass of "Y" is 62. Consider the NMR and IR spectra given on the right.
 - What type of bonds are present, as indicated by the IR spectrum of "Y" between 2,800 and 3,300.

0 | . . 4000

3000

2000

1500

1000

500

2 marks

Atomic absorbtion IR spectroscopy. NMR spectroscopy. Mass spectroscopy. HPLC

7) a) A piece of shark meat was analysed for mercury content. Which of the analytical techniques above is most appropriate for this analysis?

1 mark

b) Which two techniques above can be used to determine the structure of an organic compound?

2 marks

c) Which technique can be used to separate a mixture of proteins into its component proteins?

a. mark

d) A mixture of butane, ethanol and 1,2-ethandiol is to be separated by column chromatography technique which uses a silicon based stationary phase covered in OH groups. The mobile phase is carbon tetrachloride.
i) Which substance will have the highest retention time? Explain why

1 mark

ii) Place the three substances in order of increasing retention time?

_____ lowest

_____ highest

3 marks

e) Which two techniques would not be used to identify an organic molecule of which a very small sample is available and must be preserved for further testing? Explain why

2 marks

f) In which technique is the sample vapourised in the presence of a strong reductant.

1 mark

8) The level of carbon dioxide in the air in a spacecraft can be controlled by passing the air through canisters containing lithium hydroxide, LiOH. In a laboratory trial, the air in a 2.50 L container at 1.10×10^2 kPa and 20.0°C was passed through a canister of LiOH. The pressure of the air in the container decreased to 0.90×10^2 kPa, measured at 20.0°C. Calculate the mass of CO₂ absorbed from the air sample by the LiOH in the canister.

End of exam.

2 marks